
Journal of Engineering Mathematics, Vol. 9, No. 3, July 1975 
Noordhoff International Publishin~Leyden 
Printed in The Netherlands 

261 

Large-time inversion of certain Laplace transforms in dissipative 
wave propagation 

M. L. R A S M U S S E N  

School of Aerospace, Mechanical and Nuclear Engineering University ~/' Oklahoma, Norman, Okla. 73069, U.S.A. 

(Received October 21, 1974) 

S U M M A R Y  
A large-time approximation for the inversion of Laplace transforms that commonly occur in dissipative wave propa- 
gation is obtained and discussed. This asymptotic approximation properly describes the bulk wave front and satisfies 
appropriate boundary conditions. The generality of the method is illustrated by means of examples from gas dynamics 
and viscoelasticity. 

1. Introduction 

The inversion of Laplace transforms that are used to analyze linearized wave propagation, 
especially in dissipative media, is often a troublesome proposition. The difficulties can arise 
from at least three possibilities: (1) In well-known inversion methods such as the steepest- 
descent method [ 1], finding the appropriate contour of integration, such as the steepest-descent 
curve, may not be a trivial exercise. Furthermore, different problems involve individual analyses 
since the appropriate contours of integration may vary from problem to problem. (2)Although 
higher-order approximations may be obtained in principle by a suitable expansion in some 
parameter, the delineation of such a procedure is not always obvious or straightforward. 
(3) The asymptotic approximation may be valid near a wave front of interest, but it may break 
down at some other region that is also of interest. 

In this paper, for a class of Laplace transforms associated with linearized wave propagation 
in dissipative media, we obtain an inversion in terms of an asymptotic expansion valid for large 
times. This expansion properly describes the conditions near the bulk wave front and also 
satisfies boundary conditions imposed at another point in the disturbance field. Further, the 
complete asymptotic expansion is delineated. The results of this analysis thus overcome such 
difficulties as mentioned above and provide a general basis for analyzing a wide range of 
problems. Even in those cases where exact inversions can be obtained, the inversions may not 
be in a completely useful form, either for theoretical interpretations or for obtaining numerical 
results. The results of the present analysis should be of significant value for these cases also. 

2. General form of the transforms and examples 

We consider Laplace transforms with respect to time of a suitably normalized variable u (x, t) 
that have the form 

~(x, s) = G(x, s)e -xv(s) , (1) 

where s is the Laplace-transform variable and G(x, s) is the transform of G(x, t). We assume 
that x is positive and that F(s) is positive when s is real and positive. The function F(s) is 
restricted such that it is analytic at s = 0 and such that F (0) = 0. We further assume that F'(0) > 0 
and F" (0)< 0. These restrictions are associated with wave behavior. 

Consider several representative examples of expression (1). Consider first the chemical- 
relaxation flow induced by the impulsive motion of a piston at x = 0 [2]. In this case u represents 
the normalized velocity and G= 1Is. The function F(s) is 
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: 

a r k l + % s J  ' (2) 

where af and a~ are the frozen and equilibrium speeds of sound,/~ -= asia ~, and T~ is the charac- 
teristic relaxation time. For  linearized chemically-relaxing Prandtl-Meyer type flow past a 
sharp corner. Clarke and McChesney [2] show that F(s) has the same form as (2) but C,(x, s) 
is more complicated. 

As a second example, consider the velocity induced in a one-dimensional viscoelastic medium 
by an impulsive step velocity at x = 0 [-3].Again u represents the normalized velocity and G = l/s, 
but the function F(s) is given by 

V(s) = s (1+%s) a ,  (3) 
c 

where c is the characteristic dilational speed of sound of the medium and % is a characteristic 
viscoelastic relaxation time. 

As a third example, consider linearized flows with viscous and heat-conduction effects taken 
into account [4, 51. In this case, transforms such as (1) occur where G(x, s) is a complicated 
function and F(s) is given by 

F(s) = [(7+ P)s2 + p s - s { [ ( ? - P ) s +  p]2 + 4 p ( P - 1 ) s } ~ ]  ~ 
2 (1 + 7s) ' (4) 

where 7 is the ratio of specific heats, P=_4~/3, and a is the Prandtl number. When a =  3/4, 
expression (4) reduces to the same form as (3). Appropriate boundary conditions are imposed 
at x = 0 .  

The special forms for F (s) shown above are illustrative of the different types of functions that 
can be considered within the framework of a general analysis. From a steepest-descent analysis, 
or by the analysis of Whitham [6], one can deduce that the behavior of the bulk-wave front for 
large time is associated with the value s = 0. We are therefore interested in the behavior of the 
function F(s) near s=0.  

3. Analysis 

Since s = 0 is the pertinent value of s associated with the bulk-wave front, we expand F(s) in a 
Taylor series about s = 0 :  

, - l r , ,  2 - ,  . . . .  s 3 + o ( s 4 )  (5) F (s) ~ Fos + ~ro S -l-~r 0 

Here F~, F~, and F~' are the first, second, and third derivatives of F(s) evaluated at s=O. 
Keeping only the first two terms of this expansion does not lead to any straightforward 
approximation that is valid for large time. Among other reasons, the two-term approximation 
for F(s) will change sign when s becomes as large as -2F'o/F~, 

We can overcome this difficulty if we expand F(s) in terms of another function, 2(s), that has 
more desirable properties near s=0 .  One such function that will lead to a straightforward 
inversion is shown below together with its expansion for small s: 

2 (s) = 2ab [(s + b2) ~- - -  b] 

a s2 a s3+O(s4) (6) ~ a s  - 0  + ~  

We now require that the first two terms of(5) and (6) be the same, and a and b are thus evaluated 
a s  

a =- F'o, b = [-F'o/2F'd] + . (7) 

Recall the requirement that F~ > 0 and Fo' < 0. Taking the difference between (5) and (6) now 
yields 
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F(s)~ 2(s)+~ IF~, - 4 b  d3a I S3_~O($4) . (8) 

We can now write, for s~0, 

e-XV~S'~e-X~(S)[l + ~ K,(x)s" 1 , (9) 
n = 3  

where 

J Ka(x)-  ~ 'o"- 3a - , ( l O )  

and the remaining functions K,(x) can be obtained by laborious algebra. 
The inversion of the first term in (9) is 

abx exp I - b2(t-ax)2]t 
(11) L-1 {e-XZ~s)} _ n~ t ~ 

By means of the convolution theorem, expression (1) with the substitution of(9) can be inverted 
term by term. For the leading term in (9) we obtain 

' e x p l  b2(zzax)2]z d 

Uo(X, t) = xab@ (1 G(x, t -z)  dz (12) 
~ 0 T~ " 

We now observe that u 0 and all its time derivatives vanish at t = 0 when x > 0 (since the function 
(11) is exponentially small near t~0  when x > 0). Thus the higher-order terms associated with 
s" in (9) are related to the corresponding n th time derivatives of Uo. The complete asymptotic 
expansion for large time can thus be written 

u(x, t) ~ 1 + K,(x) (3~ Uo(X, t). (13) 
n = 3  

Since the functions K,(x) all vanish at x = 0, expression (13) is valid at x = 0 also. The function 
uo(x, t) gives the exact value of u(x, t) at x=0.  

4. Discussion 

For G = 1, corresponding to u(0, t)= 1 (and pertaining to the chemically-relaxing piston-flow 
problem and the viscoelastic problem alluded to previously according to (2) and (3)), we obtain 
from (12) 

Uo(X, t) = 1  Lerfc {b(a~- t )}+ e4ab2 x erfc {b( t~+ t)} ] .  (14) 

The third time d~erivative corresponding to the first correction in (13) is 

u~ t-4u~ [{5~-l- b2(t2-a2x2)} {3~2 + b2(t2-a2x2)}-b2t(t2+a2x2)1' (15) 

where Uo, is given by (11). Expressions (14) and (13) both satisfy the boundary condition 
u(0, t)= 1. 

Consider now conditions at the bulk wave front, ax = t. For large time expression (14) yields 

(_tat) 1 I 1 1 Uo , ~ 5 1 + 2b(nt) ~ + O(t -~) , (16) 

where exponentially small terms are omitted. Correspondingly, expression (15) yields 

u ( t t )  2b3 1 
o.~ a' "~ n ~ t ~ + O(t 5). (17) 
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The total asymptotic expansion (13) thus behaves as 

u a ' t  ~ 1 + 2b(rct)~+ O(t -~) 1 + 4b(Trt)~[ 3a ) '  

The terms of order t -~ can be combined to give the total effect, but it is useful for present 
purposes to leave expression (18) as it is. The contribution associated with the lowest-order 
approximation, Uo, is thus portrayed, as is the correction associated with K 3 which depends 
on the value of F'o". 

The result that u = �89 at the wave front for large t was pointed out by Clarke and McChesney 
[2]. In fact, they obtained the first term of expression (14) by a steepest-descent analysis but, 
because they made the further restriction that lax-t[ was suitably small, they could not 
satisfy the condition u(0, t) = 1 exactly. Also the higher-order corrections were not established. 

The large-time approximations above are valid for both problems described by (2) and (3), 
but the values of a and b are different. For the chemical-relaxation problem associated with (2), 
we get 

fi 
a= B/a s= a21, b = 

[2%0 (fi2_ 1)]~, 

F'o"- 3azZ4fl 4 (f12_ 1)(3fl 2 + 1) , (19) 

2 
a x "coo 

K3 = ~ (fla_ 1)(f12 _ _  5). 

Notice that the first correction, corres~ponding to K3, vanishes when fi= 5 ~. Thus for certain 
problems, the first correction may vanish when certain parameters take special values, and the 
first approximation, u0, is then especially accurate. 

For the viscoelastic problem associated with (3) we have 

1 9a ax 
t i t  

a -- c -1 b (2%) ~ Fo 16b 4 K3 32b4 (20) 

For  this problem Morrison [3] has obtained an exact solution, which is actually a quadrature 
that must be evaluated numerically. It is interesting to compare the present approximation with 
his results. In Fig. 1, we plot u as a function of x/c% for t /%=4  and 6, which represent only 
moderately large values of time. The first approximation (14) agrees very well with the exact 
solution. The contribution of the first correction is not shown, but it is small as the evaluation 
of the second set of brackets in expression (18) shows: 

1 
1 I1 + + O ( t _ ~ ) l [  1 1 0 ( t _ ~ ) ] .  (21) 

1.0 ~ - -  EQ.(14) U ~~REF. 3 

0"5 

%--4- % \ 

o 
0 5 I0 

X/Cry 

Figure 1. Particle velocity in a viscoelastic medium due to an impulsive velocity at x=0 .  
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The  first correct ion modifies u 0 by only 2 or  3 percent  when  t/% is as small as 6 or 4. By means  
of the present  formulas  this sort  of evaluat ion  can always be ob ta ined  straightforwardly.  

I t  is interesting to compa re  the present  results with an a p p r o x i m a t i o n  due to W h i t h a m  
(see Eq. (48), reference [6]).  In  terms of our  nota t ion,  W h i t h a m ' s  fo rmula  appears  as 

u(x, t) /~ , " (22) (rcax): to G ( x ' t - ~ ) e x p  I b Z ( z - a x ) Z q & '  - a x  a 

where/~ cor responds  to our  pa rame te r  b. F o r  the case discussed above  where  G = 1, expression 
(22) integrates to 

1 ~ 1 ) (23)  u (x, t) _~ ~ rfc [ -  b (ax) ~] - erfc b 

At  the bulk  wave  front, ax=t,  this expression yields u(ta-1, t)~_ �89 plus exponent ia l ly  small 
terms, and  te rms  of  order  t -~- do not  appear .  F o r  the condi t ions  shown in Fig. 1, fo rmula  (23) 
leads to a value at  the wave front  some 16~o below the exact value. At  x = 0, fo rmula  (23) yields 
the value u(0, t)-~ �89 whereas  the correct  value is u(0, t )=  1. Thus  a l though  fo rmula  (23) leads 
to the correct  behav ior  near  the leading par t  of  the bulk  wave  f ront  for large enough times, it is 
unsui table  for plot t ing the comple te  wave  form such as shown in Fig. 1. 

5. C o n c l u d i n g  r e m a r k s  

The  present  analysis produces  results that  are valid near  the bu lk  wave  front  and  yield the 
exact  value a t  x = 0. F u r t h e r m o r e  h igher-order  results are explicitly delineated. The  results are 
useful for theoretical  considerat ions as well as for obta ining numer ica l  results. 

W h e n  the funct ion G(x, s) is no t  simple, unlike the examples  shown,  a suitable expans ion  of 
(x, s) for small  s m a y  be appropr ia te .  In  these cases, similar a sympto t i c  representa t ions  to that  

shown above  can be obtained.  Examples  of  compl ica ted  funct ions G(x, s) tha t  appea r  in the 
analysis of  weak  explosions can be found in references [5] and  [7].  

In  certain problems,  match ing  of two solut ions valid on either side of  a surface, at  x = 0, say, 
m a y  be required [5, 7]. W h e n  this is true, it is then desirable to preserve the value at x = 0 as 
well as at  the wave  front in an app rox ima te  inversion, especially if numer ica l  results are desired 
for the plot t ing of profiles and curves. The  present  me thod  of analysis  is especially appropr ia te  
for such situations. 
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